UNIVERSIDADE FEDERAL DE ITAJUBÁ Itajubá, 04 de Julho de 2025

Resumo do Componente Curricular

Dados Gerais do Componente Curricular
Tipo do Componente Curricular: DISCIPLINA
Tipo de Disciplina:
Forma de Participação:
Unidade Responsável: COORDENAÇÃO DE CURSO DE PÓS-GRADUAÇÃO DE ENGENHARIA ELÉTRICA (11.45.15)
Código: EP428E
Nome: HIGH VOLTAGE TRANSMISSION TECHNOLOGIES
Carga Horária Teórica: 45 h.
Carga Horária Prática: 15 h.
Carga Horária Total: 60 h.
Pré-Requisitos:
Co-Requisitos:
Equivalências:
Excluir da Avaliação Institucional: Não
Matriculável On-Line: Sim
Horário Flexível da Turma: Não
Horário Flexível do Docente: Sim
Obrigatoriedade de Nota Final: Sim
Pode Criar Turma Sem Solicitação: Não
Necessita de Orientador: Não
Exige Horário: Sim
Permite CH Compartilhada: Não
Quantidade de Avaliações: 1
Ementa/Descrição: The course is intended mainly for graduate students whose research topic is within or related to power transmission technologies including power electronics, FACTS Devices, HVDC and HVAC, Extra High Voltage Transmission Lines, etc. The course provides a thorough introduction into power electronics for transmission system application from a system perspectives. The course also aims at giving an understanding of the basic principles high voltage transmission technologies. • Power system basics – active and reactive power • Extra-High Voltage Transmission Technologies • Electric power transmission using overhead lines and cables • HVDC Transmission and Active Power Transmission • System aspect of Series and shunt compensation • Multi-MW FACTS and HVDC Applications • Redundancy and fault tolerance • Analysis tools for power electronics in transmission system applications • Test techniques for high voltage transmission equipment • Conventional and advanced materials for high voltage transmission Ethical approach: All members of a group are responsible for the group's work. • In any assessment, every student shall honestly disclose any help received and sources used. • In an oral assessment, every student shall be able to present and answer questions about the entire assignment and solution. Objectives: Provide a detailed system perspective of high voltage multi-MW transmission technologies.
Referências: Hingorani, N.G., Gyugyi, L., Understanding FACTS, concepts and technology of Flexible AC Transmission Systems, IEEE Press K.R.Padiyar, FACTS Controllers in Power Transmission and Distribution, New Age Intl. Pub. 2008 Mohan, Ned, and Tore M. Undeland. Power electronics: converters, applications, and design. John Wiley & Sons, 2007.” Hingorani, N.G.,” The Role of Power Electronics in Future Power Systems,” Invited Paper, Proc. of IEEE, Special Issue on Power Electronics, April 1988 R. Adapa, "High-Wire Act: HVdc Technology: The State of the Art," in IEEE Power and Energy Magazine, vol. 10, no. 6, pp. 18-29, Nov.-Dec. 2012. M. P. Bahrman and B. K. Johnson, "The ABCs of HVDC transmission technologies," in IEEE Power and Energy Magazine, vol. 5, no. 2, pp. 32-44, March-April 2007. PF Ribeiro, BK Johnson, ML Crow, A Arsoy, Y Liu. Energy storage systems for advanced power applications. Proceedings of the IEEE 89 (12), 1744-1756 Rizk, F. A. M; Trinh, G. N.: High Voltage Engineering, CRC Press, 2014. Ryan, H. M: High-Voltage Engineering and Testing. The Institution of Engineering and Technology. 3rd Edition. 2013. Haddad, A; Warne, D.: Advances in High Voltage Engineering. The Institution of Engineering and Technology. 2009.

SIGAA | DTI - Diretoria de Tecnologia da Informação - (35) 3629-1080 | Copyright © 2006-2025 - UFRN - sigaa05.unifei.edu.br.sigaa05 vSIGAA 4.12.14_U.144