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Abstract
This study aims to evaluate the result of mechanical vibration problems in presence of an interval of values 

for parameters such as mass, length, modulus of elasticity, moment of inertia.  A possibility and computationally 
efficient method is proposed to obtain the limits of natural frequency of systems with interval parameters. The interval 
eigenvalue problem is formulated by the Finite Element Method (FEM) which stiffness and mass matrices are 
submitted to disturbance by Perturbation Theory of Matrices (PTM). At each stage of the analysis, the existence of 
uncertainty in matrix formulation is considered as the presence of disorder in a pseudo-deterministic system capable 
of providing technically reliable and efficient results. Numerical results are presented using a tool developed by the 
author in MATLAB ®. This program works with dynamic structures with interval uncertainty. The numerical results are 
compared with the literature and with a Monte Carlo simulation. Experimental tests were conducted to validate the 
results of the proposed method.

Keywords: Interval parameters; Eigenvalue; Perturbation theory of 
matrices; Monte Carlo method

Introduction
The behavior of structures with interval (or uncertain) parameters 

has been investigated by several authors due to their importance 
in the fields of structural mechanical engineering. The presence 
of interval parameters in mechanical designs can be attributed to 
physical imperfections, inaccuracies of the mathematical model and 
the complexity of the system. The evaluation of project uncertainties 
has become a stage that requires increasingly attention and special 
care during its elaboration to guarantee technically reliable projects 
with a high degree of safety and low financial costs. Uncertainty is 
defined as a deficiency that may or may not occur during the structural 
modeling process due to the engineer's lack of knowledge about the 
design, according to Oberkampf [1]. They arise due to incompatibilities 
and inaccuracies in physical and geometric parameters, such as load, 
modulus of elasticity, Poisson's coefficient, length and others.

One way to represent and perform operations with inaccurate 
data is to use interval arithmetic. In this context, an uncertainty can 
be represented by a range of real numbers, which contains the exact 
unknown value. In this way, uncertainty is involved by the limits of 
the interval and there is no need to know the probability distribution 
to represent it. Burkill [2] introduced the first approach to interval 
arithmetic. Sunaga [3,4] concretized the use of arithmetic interval years 
later. But it was with Moore [5] doctoral thesis that interval arithmetic 
gained special attention, in which the author presents a modern 
development of the technique with a range of practical use options.

Landowski [4] presented a comparison of Moore interval arithmetic 
and Relative Distance Measure (RDM) interval arithmetic. Also, in both 
Moore and RDM arithmetic the basic operations and their properties 
are described. Solved examples show that the results obtained using the 
RDM arithmetic are multidimensional while Moore arithmetic gives 
one dimensional solution. The Monte Carlo method is a well-known 
methodology and widely used to validate new uncertainty treatment 
techniques in mechanical systems, but its high computational cost 
makes it unfeasible to solve some problems. Several authors have used 
the Perturbation Technique to evaluate uncertainties in the structural 
response to avoid problems caused by improper use of the Monte Carlo 
method. Matos [6] uses the technique in civil engineering to evaluate 

the response of structural systems with interval parameters, through 
the mean values and their standard deviations.

Matsumoto e Iwaya [7] presented two methodologies to solve 
truss problem with uncertainties in structure geometry. In the first 
methodology, the problem is formulated by FEM adapted to interval 
arithmetic. In the second methodology, the FEM is formulated as an 
optimization problem, which proved to be more efficient, since the 
answers that came closer to the true solution obtained by Monte Carlo 
simulation. The analysis of uncertainties in oil exploration is an area of 
interest to companies to reduce the exploratory risk with the consequent 
optimization of financial resources. Considering this scenario, Pereira 
[8] presented a study with the use of interval arithmetic and fuzzy 
arithmetic as an alternative to evaluate the uncertainty in numerical 
methods for basin modeling. The rigid–flexible multibody system 
is meshed by using a unified mesh of the absolute nodal coordinate 
formulation (ANCF). Interval eigenvalue problems were studied by 
Qiu [9]. The authors interested in structural vibration problems with 
interval variables applied the Parameter Solution Vertex Theorem in 
the interval eigenproblems solution. Qiu [9] worked with positive 
decomposition of stiffness and mass matrices. Wang [10] proposed a 
non-intrusive computation methodology to study the dynamics of 
rigid–flexible multibody systems with a large number of uncertain 
interval parameters. 

Methods
Interval arithmetics

In general, the uncertainties can be divided into three types: 
stochastic analysis, fuzzy analysis and interval analysis.
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•	 Stochastic analysis: the stochastic approach to uncertain 
problems is to model the structural parameters as random 
quantities. Therefore, all information about the structural 
parameters is provided by the probability density functions. 
This probability density function is then used to determine an 
estimate of the system’s behavior.

•	 Fuzzy analyses:  The fuzzy approach to the uncertain problems 
is to model the structural parameters as fuzzy quantities. In 
conventional set theories, either an element belongs or does not 
belong to set. However, fuzzy sets have a membership function 
that allows for “partial membership” in the set. Using this 
method, structural parameters are quantified by fuzzy sets. 

•	 Interval analysis:  The interval approach to the uncertain 
problems is to model the structural parameters as interval 
quantities. In this method, the uncertainty in the elements is 
viewed by a closed set-representation of element parameter 
that can vary within intervals between extreme values. Then, 
structural analysis is performed using interval operations.

In the interval analysis, a subset of real numbers ℜ  represented 
by X  (see Equation (1)) is called a closed real interval or simply an 
interval. The symbol (~) represents interval parameters. The boundaries 
of the interval are represented by: l, lower bound, and u, upper bound.

[ ; ] { : , , }l u l u l uX x x x x x x x x= = ≤ ≤ ∈ℜ                                               (1)

The median value of interval number X can be defined as:

2

l u
c x xX +
=                                                                                                   (2)

The radius value of interval number X  can be defined as:

[ ], 1;1
2

u l
R x xX ε ε

 −
= = −  

 
                                                                                            (3)

An interval number can also be written as summation of center and 
radial values. This representation is called centered formulation and 
can be redefined as:

C RX X X= +                                                                                                                        (4)

Some valid algebraic rules for real numbers remain valid for 
interval numbers. The rules of equality for real numbers are not valid 
for interval numbers, only the inclusions rules are valid. There are two 
basic rules in interval arithmetic:

•	 Two equivalent arithmetic expressions in real arithmetic are 
equivalent in interval arithmetic, if and only if the expression 
variables appear only once on each side of the equality.

•	 If f(x) and g(x) are two equivalent arithmetic expressions in real 
arithmetic, so the inclusion f (x)⊆ g(x) is true, If and only if all 
the variables of the expression appear only once in f(x).

For example, these two basic rules are showed as follows.
1( )

11
f x

x

=
+

          with x ≠ 0	                                                                                (5)

In conventional arithmetic, equation (5) is equivalent to the 
simplified formula given in equation (6).

( )
1

xg x
x

=
+

                                                                                                                          (6)

Substituting interval variable x = [2; 3] into equations (5) and (6), 
the functions can be given as follows.

[ ]
[ ]

1 1 1 2 3( 2;3 ) ;
1 1 1 4 3 3 41 1 ; ;

2;3 3 2 3 2

f  = = = =       + +       

                                                          (7)

[ ] [ ]
[ ]( )

[ ]
[ ] [ ]

2;3 2;3 1 1 1( 2;3 ) 2;3 ; ;1
3;4 4 3 22;3 1

g    = = = × =   +                                                              (8)

The inclusion property is valid in equations (7) and (8), if
( ) ( )f x g x⊆ . The variable x from function g (x) appears twice and, 

in this case, g (x) generates as a result an interval greater than f (x), 
confirming an inadequate overestimation in equation (8) where 
variable repetition occurs.

Perturbation theory of matrix applied to problems of eigen-
values with interval parameters classic eigenvalue problem

{ } { }[ ]A x xλ=                                                                                                                                 (9)

where [ ]A  is a symmetric matrix of order p, { }x  is eigenvalue and 
{ }x  is associated eigen-vector

Pre-multiplying equation (9) by
 { }Tx , the eigenvalue problem turns:

{ } { } { } { }[ ]T Tx A x x xλ=                                                                                                            (10)

Equation (10) can be rearranged in the ratio known as Rayleigh 
quotient, according to Equation (11). The Rayleigh quotient defines the 
largest and the smallest eigenvalue of a symmetric matrix.

{ } [ ]{ }
{ } { }

( )
T

T

x A x
R x

x x
=                                                                                                                        (11)

It can be shown that, for a symmetric matrix, the Rayleigh quotient 
is limited between the smallest, and the largest, eigen-value.

1 ( ) pR xλ λ≤ ≤                                                                                                                               (12)

The first eigenvalue 1λ  can be obtained by unrestricted 
minimization of equation (11) as follows.

{ }
{ } { }

{ }
{ } { }

{ } [ ]{ }
{ } { }

1

0 0

min ( ) min
p p

T

Tx R x R
x x

x A x
R x

x x
λ

∈ ∈
≠ ≠

 
 = =
 
 

                                                                    (13)

The other eigenvalues are obtained by applying the additional 

constraints, { } { } { } { }0, 0T
ix s x= ≠  e 1,...,i p= , as can be 

shown in equation (14). The eigenvector, { }x , must be perpendicular 
to an arbitrary vector, { }s . The imposition of perpendicularity ensures 

that the internal product of the vectors is null { } { }( )0Tx s = .

max min ( )i R xλ  =                                                                                                                               (14)

Symmetric positive semidefinite matrix

The symmetric matrix [A] can be disturbed by a symmetric, positive 
semidefinite matrix [E] which has the following property.

{ } [ ]{ }( 0)Tx E x ≥      for { } { }0x ≠ ∈ℜ 	                                                                                  (15)

Comparing the Rayleigh quotient of the symmetric matrix [ ]A  
with the quotient of the disturbed symmetric matrix [ ] [ ]A E +   one 
obtains the following inequality:

{ } [ ] [ ] { }
{ } { }

{ } [ ]{ }
{ } { }

T T

T T

x A E x x A x

x x x x

 +  ≥                                                                                                  (16) 
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The first eigenvalue of a disturbed matrix is the solution of equation 
(17):

{ }
{ } { }

{ } [ ] [ ] { }
{ } { } { }

{ } { }

{ } [ ]{ }
{ } { }

0 0

min min   
p p

T T

T Tx R x R
x x

x A E x x A x

x x x x∈ ∈
≠ ≠

    +    ≥
   

  
                                                  (17)

The other eigenvalues are obtained by solving the equation (18):

{ } { } { }

{ } { }

{ } [ ] [ ] { }
{ } { } { } { } { }

{ } { }

{ } [ ]{ }
{ } { }0 0

1,..., 1,...,
0 0

max min max min    
T T

i i

T T

T Tx s x s
i p i p
x x

x A E x x A x

x x x x= =
= =
≠ ≠

   
       +       ≥      

     
      

       (18)

The eigenvalues of a symmetric matrix subject to a positive 
semidefinite perturbation monotonically increase from the eigenvalues 
of the exact matrix.

[ ] [ ]( ) [ ]( )i iA E Aλ λ+ ≥


                                                                                                                     (19)

Similarly, all eigenvalues of a symmetric matrix subject to a negative 
semidefinite perturbation monotonically decrease from the eigenvalues 
of the exact matrix.

[ ] [ ]( ) [ ]( )i iA E Aλ λ− ≤


                                                                                                                     (20)

Eigenvalue problem in dynamic structures
The classic problem of generalized eigenvalue for dynamic 

structures is shown in equation (21). The assembly of stiffness matrix 
[ ]K and mass matrix [ ]K  can be obtained by finite element method.

{ } [ ]{ }[ ]K x M xλ=                                                                                                       (21)

where [ ]K  is the global stiffness matrix and [M] is the global mass 
matrix.

Similarly, to equation (21), the problem of generalized interval 
eigenvalue for dynamic structures can be obtained by replacing the 
stiffness matrix and mass matrix by interval matrices K  

  and M  
 , 

according to equation (22).

{ } { }K x M xλ   =   
 

                                                                                                                     (22)

where λ  is the interval eigenvalue defined by ,l uλ λ λ =  
 .

{ } { }2( )pK x M xω   =   
 

                                                                                                               (23)

( ) { } ( ) { }2

1 1

[ , ] ( ) [ , ]
p p

e e
i i i i i i i

i i

l u K x l u M xω
= =

   
      =      

   
∑ ∑              (24) 

where { }x  is the interval mode shape and 
 pω  is the interval 

natural frequency that is obtained by i iω λ= 

 , li is the lower bound 

of matrix elements and iu  is the upper bound, [ ] [ ]e e
i iK e M  are 

deterministic matrix for each element of the discretized structure. 

The interval-eigenvalue problem, as shown in equation (23), can 
be transformed into a pseudo-deterministic eigenvalue problem as 
equation (25) subject to a perturbation matrix by introducing the 
central perturbation matrix and the radial perturbation matrix.

( ){ } ( ){ }2[ ] [ ] [ ] [ ]C R C R
iK K x M M xω+ = + 

                                                       (25)

,C R C RM M M K K K          = + = +          
                                     (26)

1 1

,
2 2

p p
e eC Ci i i i

i i
i i

u l u l
K K M M

= =

+ +         = =            
∑ ∑                            (27)

1 1

( ) ,  ( )
2 2

p p
e eR Ri i i i

i i i i
i i

u l u l
K K M Mε ε

= =

− −         = =            
∑ ∑  (28)

where [ ]CK  and [ ]CM  represent the matrices of mean values, [ ]RM  
and [ ]RM . represent the radial matrices, ,i il u    is the numerical 
interval of each element that forms the interval matrix and  is the 
interval coefficient.

The determination of the limits of natural frequencies and 

modes shape in the presence of interval uncertainties is interpreted 

mathematically as an eigenvalue problem centered on the matrices 

[ ]CK  an [ ]CM  and subject to radial perturbations represented by the 

matrices [ ]e
iM and [ ]e

iM . This perturbation is obtained by the linear 

sum of the deterministic matrices [ ]e
iM  and [ ]e

iM  of the element 

multiplied by an interval coefficient iε .

( ) { } { }
{ } { }

{ } { }
{ } { }

[ ] [ ]
,

[ ] [ ]

TT C R

T T C R

x K K xx K x
K M

x M x x M M x
λ

      +         = =            +      




  

 

                       (29)

{ } { }
{ } { }

{ } { } { } { }

{ } { } { } { }

1 1

1 1

[ ]  ( ) [ ][ ] [ ] 2 2

[ ]  ( ) [ ]
2 2

p p
T Te ei i i iT C R i i i

i i
p pT C R T Te ei i i i

i i i
i i

u l u lx K x x K xx K K x

u l u lx M M x x M x x M x

ε

ε

= =

= =

+ −   +    +      =
     + −   +    +     

   

∑ ∑

∑ ∑





  (30)

Since [ ]CK  is a symmetric positive semidefinite matrix (as) 

{ } { }[ ] 0T Cx K x ≥ , then, [ ]CK  matrix will be subject to perturbation 

of a symmetric positive semidefinite matrix RK 
 
 . Whereas, [ ]CM  

symmetric positive definite matrix (as{ } { }[ ] 0T Cx M x > ) will be 

subject to perturbation of a symmetric positive definite matrix RM 
 
 , 

according to { } { }( )0T Rx M x  > 
 .

Eigenvalues of an interval dynamic system can be solved using the 
concept of maximum-minimum characterization of the eigenvalues 
formed by symmetric matrices, as shown in equations (31) and (33).

The first interval eigenvalue is calculated by:

( ) { }
{ } { }

{ } { }
{ } { }

1

0

[ ] [ ]
, min

p

T C R

T C Rx R
x

x K K x
K M

x M M x
λ

∈
≠

  +      =          +      



  



                                 (31)

( )
{ } { } { } { }

{ } { } { } { }

1 1
1

1 1

[ ]  [ ]
2 2

min ,

[ ]  [ ]
2 2

p p
T Te ei i i i

i i
i i
p p

T Te ei i i i
i i

i i

u l u lx K x x K x
K M

u l u lx M x x M x

λ = =

= =

 + −   −    
         =        + −    +        

∑ ∑

∑ ∑
  

 (32)

and the others by:

( )
{ } { } { }

{ } { }

{ } { }
{ } { }0

1,...,
0

[ ] [ ]
, max min

T
i

T C R

i T C Rx s
i p
x

x K K x
K M

x M M x
λ

=
=
≠

 
   +       =           +         



  


                                     (33)
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( )
{ } { } { } { }

{ } { } { } { }

1 1

1 1

[ ]  [ ]
2 2

max ,

[ ]  [ ]
2 2

p p
T Te ei i i i

i i
i i

i p p
T Te ei i i i

i i
i i

u l u lx K x x K x
K M

u l u lx M x x M x

λ = =

= =

 + −   +    
         =        + −    −        

∑ ∑

∑ ∑
           (34)

Upper and lower bounds of the natural frequencies of a dynamic 
problem with interval parameters can be calculated by means of 
pseudo-deterministic eigenvalue problem, as equations (35) and (36).

( ) { } ( ) { }2
min

1 1

[ ] ( )  [ ]
p p

e e
i i i i

i i

l K x u M xω
= =

=∑ ∑                                                       (35)

( ) { } ( ) { }2
max

1 1

[ ] ( )  [ ]
p p

e e
i i i i

i i

u K x l M xω
= =

=∑ ∑                                                         (36)

Results
Beam

The objective in case 1 is to evaluate the execution time of the 
program developed in MATLAB ® due to the increase in the number 
of elements of stepped beams, as Figure 1. The elements of case 1 were 
adopted dimensionless (unitary) parameters, such as specific mass, 
length, cross-sectional area and area moment of inertia. The modulus of 
elasticity parameters was adopted intervals and dimensionless (as). The 
curve of execution time grows by increasing the number of elements 
and the degree of freedom (DOF), as shown in Figure 2. The growth 
curve follows a logarithmic function.

Truss with three bar elements

A truss formed by 3 elements of bars and 2 degrees of effective 
freedom is presented with imprecision in its elasticity modules, as 
Figure 3. The dimensionless natural frequencies are given by equation 
(37) and the bounds of the frequency range are obtained by equations 
(39) and (40).

i i L E
ρωΩ =                                                                                         (37)

As mentioned, the generalized eigenvalue problem for dynamic 
systems is given by:

[ ] [ ]( ){ } { }( ) 0K M xλ− =                                                                          (38)

where, ω  is the eigenvalue, ω , is the natural frequency, [ ]K , is the 
mode shape (or eigenvector), [ ]K  is the global stiffness matrix and is  
[M] the global mass matrix.

The problem of pseudo-deterministic eigenvalue formulated for the 
truss of Figure 3, in the presence of uncertainties in the modulus of 

elasticity of two of the bar elements, as 1 1 1[ , ] ([0,85 ; 1,1])l uE E E E= =



 

(first bar element) and 3 3 3[ , ] ([1 ; 1])l uE E E E= =



 (second element). 

The third element has unitary value, as 3 3 3[ , ] ([1 ; 1])l uE E E E= =



. 
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  + − −             − + − =              − +        
   (39)
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     (40)

Table 1 presents the natural frequencies defined dimensionless by 
equation (37), whose unitary values are 1L A Eρ= = = = .

Truss with ten bar elements

The objective in case 3 is evaluate the degree of overestimation of a 
truss is formed by ten bar elements, with two DOF by node and a total 
of nine effective DOF, as in Figure 4.

Area interval parameters were adopted for the following elements: 
1, 2, 3, 4 and 6. The intervals vary proportionally to the uncertainty 
factor β  within the range 0 3%β≤ ≤ , as equation (41). 

 ,I c c c c
iA A A A Aβ β = − + 

                                                                       (41)

where 1,2,3,4,6i = , the area mean value is 1,0cA =  and β vary 
into the range 0 3%β≤ ≤ .

The evaluation of the degree of overestimation is done by comparing 
the results obtained by the author's method, perturbation theory of 
matrices, as Figure 5a, with the results obtained by the Monte Carlo 
Method as Figure 5b.

The resulting eigenvalues from Figures 5a and 5b increases as the 
range of the input parameter of the problem increases. The resulting 
ranges of the eigenvalues obtained by Monte Carlo are narrower 
than those obtained by the author, which indicates an acceptable 
overestimation when the interval magnitude increases.

Figure 5 shows the behavior of the overestimation of the results 
with increasing the range of eigenvalues, as the area uncertainty factor 
assumes increasing values in the interval 0 3%β≤ ≤ . The increase in 
the overestimation of the results follows an increasing linear function, 
as the range of truss input parameters increase, as shown in the Figures 
5a and 5b. Figure 6a shows the behavior of the overestimation in the 
presence of the lower bounds of the interval parameters. Figure 6b 
refers to overestimation in the presence of the upper bounds of the 
parameters.

 

A1 I1E1 L 1, , A2 I2E2 L 2,,, , An In LnEn ,, ,

Figure 1: Stepped beam with n segments.
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Figure 5: Behaviour of the eigenvalues with increasing the intervals of the input parameters: a) perturbation theory of matrices; b) Monte Carlo Method.
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Figure 6: Behaviour of the results overestimation with the increase of the eigenvalue interval: a) Lower bounds; b) Upper bounds.

Interval dimensionless natural frequencies

1 1 1[ , ] ([0.85 ; 1.1])l uE E E E= =



2 2 2[ , ] ([0.75 ; 1.4])l uE E E E= =



3 3 3[ , ] ([1 ; 1])l uE E E E= =



Lower bound Upper bound
Ω1 0.7723 0.9578
Ω2 1.3429 1.6830

Table 1: Dimensionless natural frequencies of a truss formed by three bar elements 
with interval modulus of elastic.

The vertical axis of graphic ir  is the relative difference of the 
eigenvalues obtained by the author with those obtained by Monte 
Carlo, as Figure 5. The relative difference is calculated by:

i i
mc ptmi

i
mc

r
λ λ

λ

−
=                                                                                     (42)

Where i=l,u is the superscript index, l is the index of lower bounds 

of the eigenvalue u
mcλ  and u

mcλ , u is the index of upper bounds of 
u
mcλ  and i

ptmλ . The eigenvalue i
ptmλ  is calculated by author using 

the Perturbation Theory of Matrix (PTM) and i
mcλ  is the eigenvalue 

calculated by Monte Carlo (MC) simulation. 

For example: The Figures 6a and 6b was obtained from eigenvalues 
of the first natural frequency of truss shown in Figure 3. The example 
shown in Table 2 is for eigenvalues obtained with 1%β = . 

Frame

The case 4 refers to a frame with 14 elements, 15 nodes and 39 effective 
degrees of freedom, as Figure 7.

The frame elements 1, 2, 6, 12 and 13 were adopted with uncertainties in 
the cross-sectional area and at the moment of inertia, the other parameters 
are considered with fixed values, such as the specific mass 200 GPaE = , 
the modulus of elasticity 200 GPaE = , as Table 3. All the elements were 
adopted with length of 0.2 m. Table 4 shows the eigenvalues for a frame 
with the interval parameters from Table 3.

Discussion and Conclusion

This article presents a methodology for the evaluation of the 
influence of the interval parameters on the dynamic response of a 
system using the finite element method. A computational program 
was developed using the Perturbation Theory of Matrices due the 
capability to generate reliable results in a short period of time and 
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Frame elements
Moment of inertia

[ ],l uI I I=
  

( 4m )

Cross-sectional area

[ ],l uA A A=


( 2m )
Specific mass

3(kg/m )ρ

Modulus of 
elasticity

E(GPa)

1 and 12 40.0999, 0.[ ]1001 10−×


20.99 , 1.01 0[ ] 1 −×


7,800 200

2 and 13 40.1998, 0.[ ]2002 10−×


21.426, 1.454 0[ ] 1 −×


7,800
200

6 40.04995 , 0.[ ]05005 10−×


20.634, 0.646 0[ ] 1 −×


7,800
200

3, 4, 5, 7, 8, 9, 10, 11and 14 40.1 , 0.[ 1] 10−×


21.0 , 1.[ 0] 10−×


7,800
200

Table 3: Physical and geometric parameters of each element of the frame shown in Figure 5.
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Figure 7: Frame with 14 frame elements and 39 effective degrees of freedom.

Relations
Lower bound

1%β =
Upper bound

1%β =

Eigenvalues by Perturbation Theory of Matrix ,l u
ptm ptm ptmλ λ λ =  

 0.03837l
ptmλ = 0.03908u

ptmλ =

Eigenvalues by Monte Carlo Method ,l u
mc mc mcλ λ λ =  

 
l
mcλ = 0.03857 0.03886u

mcλ =

, ,
,

1% ,

l u l u
mc ptml u

l u
mc

rβ
λ λ

λ=

−
=

3
1% 5.185 10lrβ

−
= = × 3

1% 7.463 10urβ
−

= = ×

Table 2: Relative differences of eigenvalues (for truss shown in Figure 3) with numerical interval in β=1%.
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Eigen-values
Interval parameters

 λ Lower bound Upper bound
λ1 5.9953668744 × 105  6.0137826935 × 105

λ2 3.47510348019 × 106  3.49523222982 × 106

λ3 6.52479786731 × 106  6.57035253351 × 106

λ4 1.162146631440 × 107  1.168281940056 × 107

λ5 4.544173616292 × 108  4.593217098825 × 107

λ6 6.634489763163 × 107  6.709407442299 × 107

λ7 8.950821154738 × 107  9.024151720400 × 107

λ8 1.3206006855737 × 105  1.3369356349779 × 108

λ9 2.1353188654430 × 108  2.1572270914742 × 108

λ10 2.5192569919679 × 108  2.5455604858173 × 108

λ11 2.8968728951151 × 108  2.9405708216015 × 108

λ12 3.7498304982751 × 108  3.7800804912494 × 108

λ13 4.6042133013289 × 108  4.6676538425856 × 108

λ14 5.4960180414309 × 108  5.5613219566965 × 108

λ15 7.3108465622893 × 108  7.3754708830533 × 108

λ16 9.0738638440035 × 108  9.1569639401521 × 108

λ17 1.10147237064439 × 109  1.11347748038401 × 109

λ18 1.23722073989728 × 109 1.25036373970076 × 109

λ19 1.68705672505858 × 109  1.70602654046057 × 109

λ20 1.87999570173437 × 109  1.89623047878967 × 109

λ21 2.35821044409556 × 109  2.37873493434071 × 109

λ22 3.03381937642706 × 109  3.06819802648441 × 109

λ23 3.22251612516316 × 109  3.25944452451049 × 109

λ24 3.73926431274539 × 109  3.78778111550643 × 109

λ25 4.20211104046095 × 109  4.26150597423892 × 109

λ26 4.25630059483613 × 109  4.31618058211313 × 109

λ27 5.10086811426856 × 109  5.16897664243100 × 109

λ28 6.20177347213656 × 109  6.27957979811479 × 109

λ29 6.44404396987963 × 109  6.48339725184557 × 109

λ30 6.90506093550566 × 109  6.95302049322776 × 109

λ31 7.61520284922480 × 109  7.68565194468737 × 109

λ32 9.14530811665328 × 109  9.24847772302015 × 109

λ33 2.21716325969128 × 1010 1.228471235319194 × 1010

λ34 1.539181431226008 × 1010 1.549099926167509 × 1010

λ35 2.272488653930983 × 1010 2.283519484706917 × 1010

λ36 2.858065763586156 × 1010 2.885843311641310 × 1010

λ37 3.307753932142422 × 1010 3.334788706501518 × 1010

λ38 3.933228048294351 × 1010 3.962897443669482 × 1010

λ39 4.317287636191113 × 1010 4.357233362051358 × 1010

Table 4: Interval eigenvalues for the frame of Figure 5.

Edge geometry Regression equation
LH -0.269 - 0.008285 × Vc + 8.009 × f - 3.142 × ap + 0.01230 × H + 0.000189 × Vx - 0.000014 × Vz + 0.03249 × Vc × ap - 0.001161 × f × Vx 

HH -0.2468 - 0.008285 × Vc+ 6.979 × f - 3.142 × ap + 0.01354 H + 0.000189 × Vx - 0.000014 × Vz + 0.03249 × Vc × ap - 0.001161 × f × Vx 

W 0.4039 - 0.008285 × Vc + 2.276 × f - 3.142 × ap + 0.00508 H + 0.000189 Vx - 0.000014 Vz + 0.03249 Vc × ap - 0.001161 × f × Vx 

Table 5: Regression models for different tool edge geometries.

S. No Number of neurons in the hidden layer MSE
1 10 0.00126
2 15 0.000835
3 19 0.000724
4 25 0.000951
5 32 0.00987

Table 6: Number of neurons in hidden layer and MSE.
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S. No Training function MSE Epochs
1 Train br 0.0009752 9
2 Train lm 0.000724 4
3 Training dx 0.0010957 12
4 Train rp 0.0007958 7

Table 7: Different training functions and MSE.

Average % error
Expt No Ra-Expt Ra-ANN (tst) Ra-Reg (tst) Ra (Reg) Ra ANN

8 0.75 0.7465 0.76 1.33 0.46
15 0.16 0.1624 0.15 6.25 1.50
22 0.48 0.4792 0.49 2.08 0.16
34 0.8 0.796 0.82 2.5 0.50
44 0.16 0.1624 0.15 6.25 1.50
-- -- -- MAPE 3.68 0.82

Table 8: Experimental and predicted values of surface roughness for testing data.

MAPE for training data

Regression analysis ANN

4.622 0.6401

Table 9: Mean absolute percent error for regression and ANN.
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with great possibility of application in practice. In case 1 observed that 
the slope of the curve of Figure 2 shows a growth of the computation 
time with the increase of the number of elements and the DOF (Tables 
5-9). The growth curve follows a logarithmic function. In case 2, the 
dimensionless natural frequencies were presented for a truss. In case 3, 
the increase in the overestimation of the results follows an increasing 
linear function, as the range of truss input parameters increase within 
the range. The case 4 refers to a frame with 14 elements, 15 nodes and 
39 effective degrees of freedom. The eigenvalues behavior was evaluated 
in the presence of uncertainties in the cross-sectional area and the 
moment of inertia.
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