
Heuristic Performance Evaluation for Load
Balancing in Cloud

Bruno G. Batista,
Natan B. Morais,
Bruno T. Kuehne,

Rafael M. D. Frinhani
Federal University of Itajubá (UNIFEI)

Itajubá, MG - Brazil

Email: {brunoguazzelli, morais natan,

brunokuehne, frinhani}@unifei.edu.br

Dionisio M. L. Filho
Federal University of

Mato Grosso do Sul (UFMS)

Ponta Porã-MS, Brazil

Email: dionisio.leite@ufms.br

Maycon L. M. Peixoto
Federal University of Bahia (UFBA)

Salvador-BA, Brazil

Email: mayconleone@dcc.ufba.br

Abstract—Cloud computing introduces a new level of flexibility
and scalability for providers and clients, because it addresses
challenges such as rapid change in Information Technology (IT)
scenarios and the need to reduce costs and time in infrastructure
management. However, to be able to offer quality of service
(QoS) guarantees without limiting the number of requests ac-
cepted, providers must be able to dynamically and efficiently
scale service requests to run on the computational resources
available in the data centers. Load balancing is not a trivial task,
involving challenges related to service demand, which can change
instantly, performance modeling, deployment and monitoring of
applications in virtualized IT resources. In this way, the aim
of this paper is to develop and evaluate the performance of
different load balancing heuristics for a cloud environment in
order to establish a more efficient mapping between the service
requests and the virtual machines that will execute them, and
to ensure the quality of service as defined in the service level
agreement. By means of experiments, it was verified that the
proposed algorithms presented better results when compared
with traditional and artificial intelligence heuristics.

Index Terms—Cloud Computing; Load Balancing; Performance
Evaluation.

I. INTRODUCTION

In recent years, cloud computing has been one of the

most widely discussed topics in IT (Information Technol-

ogy). According to NIST (National Institute of Standards

and Technology), ”Cloud computing is a model that allows

ubiquity, convenience and on-demand access to a shared pool

of configurable resources and can be quickly delivered with

minimum management effort on the part of the users” [9].

However, as the cloud is a distributed system that provides

services on-demand and in a transparent way, the compu-

tational system present in this environment is expected to

operate appropriately. To achieve this, the system must provide

a suitable performance both in terms of response time and

availability (to minimize the risk of disrupting the service

being offered), and security (to avoid loss of data or messages)

so that it can attract the confidence of its clients and give

them the satisfaction they expect. Hence, service providers

must ensure that the different attributes of Quality of Service

(QoS) are satisfied.

Ensuring QoS in a cloud environment is not a trivial task,

since there are different types of users and devices with various

service requirements [10]. Furthermore, different providers

may offer the same service by deploying different technolo-

gies. The QoS settings begin by establishing the parameters

required by the users. These parameters are mapped and

negotiated between the components of the system to ensure

that everyone is able to achieve an acceptable level of QoS, and

thus define a Service Level Agreement (SLA). After the terms

of the SLA have been defined, the resources are allocated

and monitored, with the possibility of a renegotiation if the

conditions of the system change [1].

In this way, the QoS and compliance with SLAs have been

topics of great interest in recent years in both academia and

industry. These topics involve several challenges, such as users

and service characterization, admission control, prediction,

analysis and load balancing, monitoring, resources provision-

ing, systems optimization, among others. Considering these

challenges, the focus of this study involves cloud load balanc-

ing.

The demand for services can vary unpredictably, increasing

or reducing the number of service requests. For the user, all the

complexity behind a cloud environment is transparent, since

he is concerned only with the availability, access, performance,

and cost of a service. The provider, in turn, must ensure

that this demand is met and allocated for execution in the

virtualized computing resources in order to comply with the

SLA, as well as the efficient use of resources, at a fair

price. For this, efficient load balancing algorithms must be

considered.

Therefore, the study carried out in this paper aims to

develop and evaluate load balancing heuristics for a cloud

environment, in order to guarantee compliance with service

level agreements, as well as efficient use of computational

resources. These algorithms must consider basic premises

present in traditional algorithms, as well as techniques of

optimization and artificial intelligence.

All the material discussed in this paper is structured in the

following sections: the state-of-the-art is sets out in Section

593

2018 International Conference on High Performance Computing & Simulation

978-1-5386-7879-4/18/$31.00 ©2018 IEEE
DOI 10.1109/HPCS.2018.00099

II; Section III describes the developed algorithms; Section IV

presents the design of the experiments; the experimental results

are analyzed in Section V; finally, Section VI presents the

conclusions as well as the premises for future work.

II. STATE-OF-THE-ART

The unpredictability and constant behavior change in a

cloud computing environment coupled with the ability to offer

to users the highest possible satisfaction in providing a service

demonstrates the importance of load balancing [7]. The load

balancing can be described as responsible for distributing

service requests between physical and virtual resources in

order to avoid under- or over-utilization of available resources,

as well as guaranteeing the user the execution of the SLA [1].

However, according to [11], the application of load bal-

ancing mechanisms involves certain challenges, of which the

following stand out:

• Reliability: the chosen technique must be reliable, so that

there are no errors and modifications in the user data,

since this data will be transferred from one location to

another during the execution of the balancing.

• Adaptability: load balancing must adapt to the state of

the environment, changing the way of operating when

encountering adverse situations and assigning the loads to

the computational resources in the shortest time possible,

always respecting the SLA.

• Fault Tolerance: the algorithm must handle exceptions.

In this way, when encountering an atypical situation

and/or errors during execution, it must continue operating.

• Throughput: the technique must ensure that there is the

highest throughput possible at the lowest expense. If an

algorithm does not increase system throughput, it does

not fulfill its purpose.

• Waiting Time: the waiting time of a request to be

allocated to a resource should be minimized whenever

possible.

There are several studies in the literature that deal with load

balancing. In [7], the authors discuss the importance of load

balancing in a cloud environment. They present the Min-Min

and Max-Min techniques, exploring and comparing how these

traditional approaches act. In the performed experiments, it

was verified that the processing time is smaller using the Max-

Min technique.

Tyagi and Kumar [12] discuss about three different methods

of load balancing: Round Robin, method based on time

division in quantum; the Equally Spread Current Execution

Location, which provides resources randomly for the requests

processing taking into account the idleness of the resource;

and Throttled Load Balancing Policy, which defines the order

of resource adequacy for each type of request, in which if

all are busy, the request is inserted in a queue and waits to

be executed. An analysis of these methods was performed

considering the response mean time as the response variable.

According to the results, the method Throttled proved to be

more efficient in relation to the others.

Singh et al. [11] cite possible forms of load balancing: the

Static, which is responsible for a small cloud environment,

with fast Internet and no focus on communication delay;

the Dynamic, focused on reducing the communication delay

and execution time, as well as being appropriate for larger

environments; and the Hybrid, which uses a combination of

both previous concepts. In this way, the analyzed environment

was based on a dynamic balancing, which was analyzed by the

authors using the method of autonomic agents. Of the three

agents present, two of them used natural computing, where

the ant colony heuristic was adopted. Analyzes verified that

this mechanism proved to be an efficient form of balancing,

both in times of under- and over-utilization of computational

resources.

In the study presented in [5], the authors discuss a totally

different way of dealing with the load balancing problem.

They proposed a method that uses a genetic algorithm, which

follows the basic principles of initial population, cross-over

between genes and mutation. In the experiments, the authors

used a simulated environment with different numbers of Data

Centers available to verify and compare the methods of Round

Robin, First Come First Serve, Stochastic Hill Climbing and

the proposed Genetic Algorithm. In this analysis, it was

possible to verify that the greater the availability of virtual

machines (VMs) in a Data Center, the greater the effectiveness

of the Genetic Algorithm in comparison to the others. It

is worth mentioning that Stochastic Hill Climbing, another

artificial intelligence technique, obtained better results than the

other algorithms in practically all the experiments, behind only

the Genetic Algorithm.

In [13], the authors did not propose any new method, but

presented an extension to the scheduling algorithm called

HySARC2. This algorithm is composed of three parts: i)

analysis of available resources and clustering; ii) provisioning

of different groups of tasks for different clusters; and iii)

scheduling of requests to previously defined clusters. The

authors proposed a change based on a hybrid performance,

with two different algorithms for scheduling. Thus, HySARC2

can work with different algorithms, at the same time, according

to the need of each group of requests and resources.

Based on the analyzed papers, it was possible to analyze the

characteristics of each heuristic, as well as the shortcomings

of each approach, aiming the development of new algorithms

capable of dealing with different service demands. These

algorithms are described in the next section.

III. ALGORITHMS

The purpose of this study was to implement and analyze

the performance of distinct load balancing algorithms in a

cloud environment. For this, it was necessary to use a cloud

environment for the proposed implementations, analyzes and

validations. Thus, the study developed in [2] was used as a

basis, in which the authors proposed the ReMM (Resource

Management Module).

ReMM is a cloud resource management module, initially

implemented in the CloudSim simulator [4], which consid-

594

ers the manipulation of computational resources on-the-fly,

respecting the quality of service metrics defined in the service

level agreement. It aims to meet any request demand, applying

both horizontal and vertical scalability in order to dynamically

change the amount of computational resources, impacting

the price. Considering the paper limitation, more information

about ReMM can be find in [2] and [3].

In the current version, only the First Come First Served

(FCFS) algorithm is available in ReMM to perform the load

balancing process. Thus, considering the great dynamicity of

service demand, new algorithms were developed and inserted

in ReMM in the study carried out in this paper. The following

sections describe these algorithms.

A. First Come First Served - FCFS

FCFS works with a list of requests. The requests arrive and

are answered in a sequential way by the resources available in

the system, that is, the first incoming request will be assigned

to the first resource, the second request to the second resource

and so on until the end of the executions. Upon arriving at the

last resource, when a new request arrives, it will be assigned

to the first resource used, resetting the resource list. Thus, the

sequential assignment of the requests to the virtual machines,

which are organized in a circular list, is applied [5].

B. Min-Min

The Min-Min algorithm is a balancing strategy that aims to

execute as many requests as possible, that is, to maximize the

throughput. To do this, it sends all small requests to the most

powerful resources and large requests for resources with the

lowest computational power. In this way, the requests will be

executed faster, allowing other smaller requests to be sent to

these resources. With this strategy the most powerful resources

are not at any time occupied with larger and more expensive

requests and always manage to maintain the fluidity of the

system, quickly performing all the tasks assigned to them [7].

On the other hand, larger and more expensive requests are

delivered to the less powerful resources of the environment,

leading in a longer time for them to be finalized. This also

makes the possibility of starvation greater, as it may occur

when all resources with lower computational power are busy

with large requests, and new requests of this size arrive in the

system requiring to be executed. In this way, they must wait

for some of these resources to be idle, which can take a long

time.

C. Ants Colony

The Ant Colony heuristic is an optimization algorithm

generally used when dealing with graph theory and resolutions

of complex and known problems, as the shortest path problem.

However, it can also be used for problems such as load

balancing, as shown in [14].

The ant colony, as its name says, is a technique based on

the ants behavior. Its heuristic is based on probability, and

because it is an intelligent algorithm, it needs to improve over

time, learning new things, misunderstanding and accepting

mutations, in order to find the best overall solution to the

problem.

The algorithm execution begins when the ant leaves its

colony in search of food, making its journey almost randomly,

since it does not know where the food is. If the food is found,

the ant returns doing the same route of the way releasing

pheromone during its journey. In this way, when other ants

go in search of food, the search will no longer be as aimless,

since they already have pheromones to follow [6].

This search occurs through the pheromones of other ants,

but it is not the only path that must be followed. The ant is

likely to choose another path or to miss the path the other ant

made. If the path is worse than the previous one, over time

the amount of pheromone will decrease (rate of evaporation).

However, by finding better and more efficient paths, more ants

will use them, making the pheromone increase, which results

in a greater probability of using this path.

D. Dynamic Min-Min

Dynamic Min-Min is an algorithm based on Min-Min and

proposed in this study. This new approach follows the main

precept of the original algorithm, which is the execution of

small requests in more powerful resources and larger requests

in less powerful resources. However, this algorithm adopts a

dynamic approach. Its operation consists in the organization

of the computational resources of the environment and the

requests in different lists, according to the computational

power and the size of the request, respectively.

Differently from the original Min-Min algorithm, Dynamic

Min-Min does not split the resources into just two equal-sized

groups. It analyzes the environment and separates available

resources into groups that contain only resources with the same

computational power. For example, if an environment contains

20 weak VMs, 40 medium VMs, and 30 strong VMs, then

three clusters with 20, 40 and 30 VMs, respectively, will be

created, each one containing only the resources of the same

group.

Then, Dynamic Min-Min analyzes and classifies a request

according to its size. In the original algorithm, the request

is analyzed and classified as a small or large request in a

static way, i.e., before the environment execution. In the new

algorithm, this analysis and classification occurs dynamically,

on-the-fly, allowing the definition of different lists with distinct

groups of requests.

In this way, a more assertive distribution is applied, since

a more intrusive and dynamic analysis is applied in the

computational resources and in the requests, allowing the

more efficient grouping and mapping between requests and

resources.

E. Dynamic Distribution for Efficient Use of resources -
DDEU

DDEU is another algorithm proposed in this paper. It applies

a strategy of dynamic allocation of requests based on the

idleness of resources of a particular computational power

595

group, in order to meet the deadline defined in the SLA and

the efficient use of resources.

Initially, there is the warm up phase, in which each available

computational resource receives a request of any size to

execute, following the methodology applied in FCFS. Thus,

at this stage the characteristics of requests and computational

resources are not considered, allowing any request to be sent

for execution in any resource.

After the warm up, the computational resources are divided

into groups according to computational power. Within each

group, resources are organized into a list according to the

utilization rate of each one. As soon as a new request arrives, it

is sent to the group that has the highest probability to execute

it within the deadline defined in the SLA. Within the group, it

is analyzed whether the first computational resource of the list

is idle. If it is, it receives the request for execution. Otherwise,

the next resource in the list is parsed.

All heuristics described in this section were inserted and

evaluated using ReMM. The next section presents the design

of the experiments.

IV. DESIGN OF THE EXPERIMENTS

For the execution of the experiments, a provider composed

by data centers was configured, which hosted the virtual

machines that executed the service requests. The physical

resources were considered unlimited, and thus, all requests

were accepted and executed by the VMs. In addition, there

was no differentiation of users through priorities.

The virtual machines were modeled based on the M3

instances types of Amazon1. Table I shows the settings for

each VM.

TABLE I
SPECIFICATION OF INSTANCES.

Instances Virtual core Main memory (GB) Disk SSD
m3.medium 1 3.75 1 x 4

m3.large 2 7.5 1 x 32

m3.xlarge 4 15 2 x 40

m3.2xlarge 8 30 2 x 80

Real-time, lightweight and heavyweight requests were dy-

namically created and sent during simulation observation time.

This type of submission made it possible to create more

realistic simulations because it made the user behavior closer

to what is expected in a real environment2. A SLA was defined,

which stipulated a deadline of 1000 milliseconds to execute a

request, with a deviation of 15%.

The experiments presented in the next section were con-

ducted with the purpose of evaluating metrics related to

service performance using different load balancing algorithms

in the provider. Thus, the following response variables were

considered:

• Execution Mean Time (EMT): the average time spent,

in milliseconds, in the execution of service requests

during the observation time.

1https://aws.amazon.com/en/ec2/instance-types/
2Other types of loads can be exploited in future work.

• Number of Answered Requests (AR): average rate of

requests met by a cloud environment during the observa-

tion time.

A full factorial design was used following the methodology

presented by [8], in which the factors correspond to the

characteristics of the analyzed environment and the levels

are the possible variations that the environment can present.

Thus, 2 factors and their respective levels were considered and

presented in Table II.

TABLE II
FACTORS AND LEVELS.

Factors Levels
Algorithm FCFS, Min-Min, Dynamic Min-Min, Ant Colony or DDEU

Instance m3.medium, m3.large, m3.xlarge or m3.2xlarge

In Table II, the Algorithm factor defines whether requests,

which may be light or heavy, will be sent to execute

in available instances (m3.medium, m3.large, m3.xlarge or

m3.2xlarge) by means of the FCFS, Min-Min, Dynamic Min-

Min, Ant Colony or DDEU balancing algorithms.

Another important factor is the number of VMs available

to meet the services demand. For this factor, a fixed value of

500 VMs3 was defined, which were grouped according to the

cases defined (Cases 1, 2, 3 and 4):

• Case 1 - Equal Division: of the 500 VMs available in

the environment, 125 belong to each of the four types

presented in Table I. Therefore, a cloud environment with

the same amount of VMs for all types is analyzed in this

case.

• Case 2 - Predominance of VMs with Low Processing
Power: in this case most of the environment concentrates

VMs with low processing power, i.e., 200 VMs are

m3.medium, 200 are m3.large, 50 are m3.xlarge and

50 are m3.2xlarge. Thus, 80% of the VMs available

in the environment are of the two types with lower

computational power.

• Case 3 - Predominance of VMs with Intermediate
Processing Power: for this case there is the predomi-

nance of VMs with intermediate processing power, using

more instances of m3.large and m3.xlarge types, with

200 VMs each one. For both m3.medium and m3.2xlarge
types, there is a total of 100 VMs available, 50 VMs for

each type.

• Case 4 - Predominance of VMs with High Processing
Power: finally, there is the case where 200 VMs are

m3.xlarge, 200 VMs are m3.2xlarge and only 50 VMs

are allocated for each of the two instances types with

lower processing value (m3.medium and m3.large). In this

way, an environment with greater accumulated processing

power is modeled.

Therefore, a cloud system was simulated with 500 VMs,

which were organized in different quantities according to the

3Other configurations and quantities of VMs can be explored in future
works.

596

case, allowing evaluations of the balancing algorithms in the

predominance of different types of virtual machines.

In addition, two experiment scenarios were defined. For

the first scenario the analyzed algorithms were FCFS, Min-

Min and Dynamic Min-Min (proposed in this paper). These

algorithms were chosen so that the behavior of Dynamic Min-

Min could be analyzed in relation to traditional algorithms,

which are very well documented in the literature.

In the second scenario, the analyzed algorithms were Dy-

namic Min-Min, Ant Colony and DDEU (also proposed in

this paper). Dynamic Min-Min was again chosen so that its

performance is now not compared to traditional algorithms,

but rather to more complex and intelligent algorithms.

In both scenarios, each experiment was run 10 times.

Through 10 replications it was noted that the results for each

response variable did not show significant variations. Thus, the

average, standard deviation and the interval confidence of 95%

were calculated for each setting of the experiments. Finally, for

the first scenario, an observation time of approximately 86,400

seconds was defined, corresponding to 1 day of uninterrupted

execution, while for the second scenario the observation time

was 172,800 seconds, i.e., 2 uninterrupted days of execution.

The need for an even longer observation time is due to the fact

that Ant Colony and DDEU are intelligent algorithms that need

a longer time to reach convergence.

V. ANALYSIS OF THE RESULTS

From the planning specified in the previous section, it

was possible to model an experimentation environment with

different VMs clusterings, allowing to compare the balancing

algorithms through the response variables. Thus, two scenarios

of experimentation were defined and analyzed.

A. Scenario 1

Figure 1 and Table III present the experiments results

considering the requests execution mean times (EMTs), in

milliseconds, during the simulation observation time. It was

verified that the Dynamic Min-Min algorithm obtained the

shortest times for all the analyzed cases, except for the

fourth case, since the algorithm tried to maintain the requests

execution times as close as possible to the defined deadline.

For Case 1, in which the number of virtual machines

m3.medium, m3.large, m3.xlarge and m3.2xlarge was the

same, the Dynamic Min-Min heuristic reduced the requests

EMTs by approximately 15% when compared to the FCFS

algorithm and 51% over Min-Min. This reduction was approx-

imately 56% and 88%, respectively, for the experiments with

the premises defined in Case 2, in which there was a predom-

inance of VMs with lower computational power (m3.medium
and m3.large). For Case 3, in which there was predominance

of VMs with intermediate computational power(m3.large and

m3.xlarge), there was a reduction in the EMT of approximately

2% with the Dynamic Min-Min algorithm in relation to

FCFS and of 28% with the Dynamic Min-Min in relation to

Min-Min. Finally, in Case 4, in which the number of VMs

m3.xlarge and m3.2xlarge was predominant (80% of the total),

the Dynamic Min-Min algorithm presented requests execution

mean times larger than those obtained in the FCFS and Min-

Min algorithms, approximately 25% and 7%, respectively.

This occurred because Dynamic Min-Min aims to maximize

system throughput by assigning the highest requests for the

least powerful resources and the smallest requests for the most

powerful resources dynamically. However, with the predomi-

nance of more powerful instances in Case 4, heavy requests

overloaded less powerful machines (accounting for 20% of

total VMs), generating queues of large requests. Consequently,

the execution time of these requisitions has been impaired. In

addition, the Dynamic Min-Min algorithm takes into account

the deadline defined in the SLA to adjust itself and try to

ensure the required QoS, as opposed to FCFS and Min-Min

algorithms.

Fig. 1. Response mean times in Scenario 1.

Fig. 2. Average number of answered requests in Scenario 1.

Considering the average number of answered requests, the

lower the time spent executing a request, the greater the

throughput of the environment. In Figure 2 and Table IV it

is possible to note that, under conditions of equality between

597

TABLE III
COMPARISON OF THE EXECUTION MEAN TIMES.

Case Algorithm EMT (ms) Standard Deviation Interval Confidence Lower Limit Upper Limit
Case 1 FCFS 1265.24 23.27 14.42 1250.81 1279.66

Case 1 Min-Min 1660.14 47.05 29.16 1630.98 1689.31

Case 1 Dynamic Min-Min 1102.07 2.37 1.47 1100.60 1103.54

Case 2 FCFS 1715.50 20.26 12.55 1702.95 1728.06

Case 2 Min-Min 2069.97 39.83 24.69 2045.28 2094.65

Case 2 Dynamic Min-Min 1101.76 1.46 0.91 1100.85 1102.67

Case 3 FCFS 1128.52 16.05 9.95 1118.57 1138.47

Case 3 Min-Min 1411.00 15.96 9.89 1401.11 1420.89

Case 3 Dynamic Min-Min 1102.31 2.03 1.26 1101.06 1103.57

Case 4 FCFS 827.47 12.43 7.71 819.76 835.17

Case 4 Min-Min 1020.81 15.76 9.77 1011.04 1030.58

Case 4 Dynamic Min-Min 1102.46 2.75 1.70 1100.76 1104.16

TABLE IV
COMPARISON OF THE AVERAGE NUMBER OF ANSWERED REQUESTS.

Case Algorithm AR Standard Deviation Interval Confidence Lower Limit Upper Limit
Case 1 FCFS 6277.60 97.99 60.73 6216.87 6338.33

Case 1 Min-Min 4535.80 111.73 69.25 4466.55 4605.05

Case 1 Dynamic Min-Min 7398.70 43.07 26.69 7372.01 7425.39

Case 2 FCFS 4775.60 85.86 53.22 4722.38 4828.82

Case 2 Min-Min 3759.60 65.99 40.90 3718.70 3800.50

Case 2 Dynamic Min-Min 7582.00 38.29 23.73 7558.27 7605.73

Case 3 FCFS 7179.10 155.59 96.44 7082.66 7275.54

Case 3 Min-Min 5491.20 90.72 56.23 5434.97 5547.43

Case 3 Dynamic Min-Min 5599.00 83.08 51.49 5547.51 5650.49

Case 4 FCFS 9026.10 205.41 127.31 8898.79 9153.44

Case 4 Min-Min 6864.10 181.30 112.37 6751.73 6976.47

Case 4 Dynamic Min-Min 5574.90 70.80 43.88 5531.02 5618.78

the number of VMs of different types (Case 1), the Dynamic

Min-Min algorithm answered more requests when compared to

FCFS and Min-Min heuristics, approximately 15% and 39%,

respectively. In Case 2, with predominance of less powerful

instances, the Dynamic Min-Min algorithm also proved to be

more efficient, increasing the average number of answered

requests in 37% when compared to FCFS and 50% to Min-

Min. However, with the computational power increase in

Cases 3 and 4, the FCFS algorithm presented better results

considering the average number of answered requests. For

Case 3, Dynamic Min-Min answered approximately 28% less

requests than FCFS and only 2% more requests than Min-Min.

Finally, in Case 4 (predominance of more powerful instances),

Dynamic Min-Min obtained the worst result in relation to

all analyzed cases, a reduction of approximately 62% in the

number of answered requests when compared to FCFS and

23% when compared to Min-Min. This decrease in the number

of answered requests with the Dynamic Min-Min algorithm is

related to the reduction in the amount of computing resources

with lower computational power. According to this algorithm,

heavier requests are attributed to resources with lower compu-

tational power, which, because they are in smaller quantities

in Case 4, generate queues composed of heavy requests.

B. Scenario 2

For the second experiment scenario, three algorithms were

used: Dynamic Min-Min, for baseline of comparison between

the two scenarios and because it is an algorithm developed in

this paper; Ants Colony, because it is an artificial intelligence

algorithm; and finally, DDEU, a heuristic also proposed in this

paper, which aims to ensure the SLA and the efficient use of

resources.

In this scenario, the observation time was twice that used

in the previous scenario, 172,800 seconds, equivalent to two

consecutive days of simulation. This was used as a basis

because the Ant Colony and DDEU heuristics are algorithms

that adapt themselves over time and usually require a larger

initial time (warm up) to start balancing the load in a more

efficient way. In addition, it is worth mentioning that the

deadline for executing a request was 1000 milliseconds, with

a rate of variation of 15%.

In Figure 3 and Table V, it can be verified that in all

cases the Ant Colony algorithm presented the shortest requests

execution mean times, in milliseconds. In Case 1 there was

a reduction of approximately 47% considering the Dynamic

Min-Min algorithm and 28% over the DDEU. In Case 2, this

reduction was approximately 22% for both algorithms. For

Case 3, the Ant Colony reduced the EMT by approximately

39% when compared to Dynamic Min-Min and 37% when

compared to DDEU. Finally, this reduction was approximately

84% and 50%, respectively, in Case 4. However, only in Case

2 the EMT obtained by the Ant Colony heuristic respected

the deadline defined in the SLA. Thus, although it presented

the shortest times, it was considered inefficient with respect to

compliance with the SLA. On the other hand, it was verified

that both Dynamic Min-Min and DDEU algorithms kept the

EMTs within the defined deadline, respecting the SLA.

Fig. 3. Response mean times in Scenario 2.

TABLE V
COMPARISON OF THE EXECUTION MEAN TIMES.

Case Algorithm EMT (ms) Standard Deviation Interval Confidence Lower Limit Upper Limit
Case 1 Dynamic Min-Min 1109.69 7.43 4.60 1105.08 1114.29

Case 1 Ant Colony 753.15 25.48 15.79 737.36 768.94

Case 1 DDEU 963.92 87.85 54.45 909.47 1018.36

Case 2 Dynamic Min-Min 1108.06 5.46 3.38 1104.67 1111.44

Case 2 Ant Colony 906.02 45.81 28.39 877.63 934.41

Case 2 DDEU 1107.77 2.27 1.41 1106.36 1109.17

Case 3 Dynamic Min-Min 1112.39 6.48 4.02 1108.37 1116.41

Case 3 Ant Colony 798.62 31.04 19.24 779.38 817.86

Case 3 DDEU 1092.27 3.88 2.41 1089.97 1094.68

Case 4 Dynamic Min-Min 1109.66 10.01 6.20 1003.46 1115.87

Case 4 Ant Colony 603.41 25.77 15.97 587.44 619.38

Case 4 DDEU 904.44 1.28 0.79 903.65 905.23

In terms of the average number of answered requests (Figure

4 and Table VI), it was observed that the DDEU algorithm

presented the best results because it performs a more intrusive

598

Fig. 4. Average number of answered requests in Scenario 2.

TABLE VI
COMPARISON OF THE AVERAGE NUMBER OF ANSWERED REQUESTS.

Case Algorithm AR Standard Deviation Interval Confidence Lower Limit Upper Limit
Case 1 Dynamic Min-Min 14748.80 158.24 98.08 14650.72 14846.88

Case 1 Ant Colony 8467.30 728.96 451.82 8015.48 8919.12

Case 1 DDEU 17605.70 1772.72 1098.74 16506.96 18704.44

Case 2 Dynamic Min-Min 15238.30 119.03 73.77 15164.53 15312.07

Case 2 Ant Colony 6858.80 773.97 479.71 6379.09 7338.51

Case 2 DDEU 15391.50 60.22 37.32 15354.18 15428.82

Case 3 Dynamic Min-Min 11124.00 164.30 101.84 11022.16 11225.84

Case 3 Ant Colony 8507.80 1094.00 678.07 7829.73 9185.87

Case 3 DDEU 15088.80 120.49 74,68 15014.12 15163.48

Case 4 Dynamic Min-Min 11220.80 226.94 140.66 11080.14 11361.46

Case 4 Ant Colony 11472.80 1618.92 1003.42 10469.38 12476.22

Case 4 DDEU 16368.00 166.44 103.16 16264.84 16471.16

analysis on the computational resources, allowing a fairer re-

quests distribution. In Case 1, the DDEU algorithm presented

an increase in the average number of answered requests of

approximately 16% and 52% in relation to Dynamic Min-Min

and Ant Colony, respectively. For Case 2, with predominance

of instances with lower computational power (m3.medium
and m3.large), DDEU proved to be more efficient than the

Ant Colony, answering 55% more requests. On the other

hand, in relation to Dynamic Min-Min the difference was

minimal, only 1%. In the environment with predominance

of intermediate instances (Case 3), the percentage of DDEU

superiority in relation to Dynamic Min-Min and Ant Colony

was approximately 26% and 44%, respectively. Finally, in

Case 4, there was an improvement in the average number of

requests answered by the Ant Colony algorithm, so that there

is no statistical difference between it and the Dynamic Min-

Min approach. On the other hand, DDEU provided an increase

of approximately 31% in relation to these two algorithms.

It is worth mentioning that, although the Ant Colony algo-

rithm obtained the lowest EMTs, it also obtained the worst

performance when the average number of answered requests

is considered. This is because this algorithm does not make

an efficient use of computational resources. However, as the

computational power of the virtual machines increased, there

was an increase in the average number of answered requests

with this algorithm, in the order of 40% from Case 2 to Case

4.

VI. CONCLUSIONS

Since the users service requests are executed in the virtual

machines available in the provider, it is necessary to study

and analyze load balancing mechanisms so that the mapping

between the requests and the VMs can be more efficient,

guaranteeing the QoS defined in the SLA. For this reason,

this paper developed and evaluated different load balancing

heuristics using different scenarios of experiments through

ReMM.

Four distinct configurations of predominance of virtual

machine types were defined, which impacted on the provider

processing capacity. In this way, it was possible to compare

and analyze the behavior of five heuristics, FCFS, Min-Min,

Dynamic Min-Min, Ant Colony and DDEU, with variations

in processing capacity, exploring the heterogeneity of a cloud

environment.

In Scenario 1 results, it was found that the proposed algo-

rithm called Dynamic Min-Min was more efficient than the

traditional algorithms FCFS and Min-Min (its predecessor),

guaranteeing the defined QoS in the SLA. In Scenario 2,

the other proposed algorithm, called DDEU, also presented

better throughput in all analyzed cases, since it performs a

more intrusive analysis on the requests and on the groups of

resources defined by it. In addition, for environments with

predominance of more powerful instances, DDEU was more

efficient than Dynamic Min-Min algorithm.

Further studies should be conducted that will be based

on the results and findings obtained in the course of this

paper. They include the development of a prototype using

real machines, which will allow a comparison of data from

simulated and prototyped environments, as well as analyzes

of different network topologies, service demands and compu-

tational resources.

ACKNOWLEDGMENTS

The authors thanks FAPESB, FAPEMIG, CAPES, CNPq,

UNIFEI and DDMX for the financial support.

REFERENCES

[1] D. Ardagna, G. Casale, M. Ciavotta, J. F. Pérez, and W. Wang.
Quality-of-service in cloud computing: modeling techniques and their
applications. Journal of Internet Services and Applications, 5(1):1–17,
2014.

[2] B. G. Batista, J. C. Estrella, C. H. G. Ferreira, D. M. Leite Filho, L. H. V.
Nakamura, S. Reiff-Marganiec, M. J. Santana, and R. H. C. Santana.
Performance evaluation of resource management in cloud computing
environments. PloS one, 10(11):21, 2015.

[3] B. G. Batista, C. H. G. Ferreira, D. C. M. Segura, D. M. Leite Filho,
and M. L. M. Peixoto. A qos-driven approach for cloud computing
addressing attributes of performance and security. Future Generation
Computer Systems, 68:260–274, 2017.

[4] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and R. Buyya.
Cloudsim: a toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms. Soft-
ware: Practice and Experience, 41(1):23–50, 2011.

[5] K. Dasgupta, B. Mandal, P. Dutta, J. K. Mandal, and S. Dam. A genetic
algorithm (ga) based load balancing strategy for cloud computing.
Procedia Technology, 10:340–347, 2013.

[6] M. Dorigo, M. Birattari, and T. Stutzle. Ant colony optimization. IEEE
computational intelligence magazine, 1(4):28–39, 2006.

599

[7] P. G. Gopinath and S. K. Vasudevan. An in-depth analysis and study of
load balancing techniques in the cloud computing environment. Procedia
Computer Science, 50:427–432, 2015.

[8] R. Jain. The art of computer systems performance analysis: techniques
for experimental design, measurement, simulation, and modeling. New
York, NY, USA, Wiley, 1991.

[9] P. Mell and T. Grance. The nist definition of cloud computing (draft).
NIST special publication, 800:145, 2011.

[10] R. R. Selmic, V. V. Phoha, and A. Serwadda. Quality of Service.
Springer, 2016.

[11] A. Singh, D. Juneja, and M. Malhotra. Autonomous agent based load
balancing algorithm in cloud computing. Procedia Computer Science,
45:832–841, 2015.

[12] V. Tyagi and T. Kumar. Ort broker policy: Reduce cost and response time
using throttled load balancing algorithm. Procedia Computer Science,
48:217–221, 2015.

[13] M.-A. Vasile, F. Pop, R.-I. Tutueanu, V. Cristea, and J. Kołodziej.
Resource-aware hybrid scheduling algorithm in heterogeneous dis-
tributed computing. Future Generation Computer Systems, 51:61–71,
2015.

[14] Z. Zhang and X. Zhang. A load balancing mechanism based on
ant colony and complex network theory in open cloud computing
federation. In Industrial Mechatronics and Automation (ICIMA), 2010
2nd International Conference on, volume 2, pages 240–243. IEEE, 2010.

600

