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Abstract
Purpose of review New biomaterials for biomedical applications have been developed over the past few years. This work
summarizes the current cell lines investigations regarding nanosurface modifications to improve biocompatibility and
osseointegration.
Recent findings Material surfaces presenting biomimetic morphology that provides nanoscale architectures have been shown to
alter cell/biomaterial interactions. Topographical and biofunctional surface modifications present a positive effect between
material and host response.
Summary Nanoscale surfaces on titanium have the potential to provide a successful interface for implantable biomedical devices.
Future studies need to directly evaluate how the titanium nanoscale materials will perform in in vivo experiments.
Biocompatibility should be determined to identify titanium nanoscale as an excellent option for implant procedures.
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Introduction

Life expectancy has increased over the years due to advances
in technology that enhance quality of life. Thus, the demand
for orthopedic and dental implants has grown substantially,
leading to improved research and development of biomaterials
with better mechanical and biological properties [1]. As can be
observed, the global orthopedic implantsmarket is expected to
reach USD 64.0 billion by 2026 [2]. Additionally, the global
dental implants market is projected to achieve USD 13.01
billion by 2023 [3]. Adequate selection and design of
materials according to the intended application [4] are
essential to prolonging the biomaterial lifetime.

However, the ideal metallic material must have a low modu-
lus of elasticity close to bone, tensile strength, fatigue resistance,
density, hardness, elongation wear, and corrosion resistance. For
many years, dental and orthopedic fields have used stainless
steel and cobalt-chrome alloys for their implants [5]. They have
shown clinical success because these materials have excellent
mechanical properties, high strength, good corrosion resistance,
and compatibility with the human body. Nevertheless, titanium
and its alloys have been increasingly applied because of similar
but improved mechanical and biological properties. Titanium
has high biocompatibility and is bioinert. However, the long-
term success of the implant depends on the interaction between
bone tissue and the implant. The implicit idea is that the implant
should be inert to avoid an adverse inflammatory reaction in the
body [6]. On the other hand, implants must stimulate
osseointegration. In this way, the surface characteristics of an
implant significantly influence its stability and lifetime depend-
ing on the biomaterial [7].

Nowadays, there are many approaches for performing sur-
face modifications, such as topographical and biofunctional,
to improve osseointegration. For example, techniques such as
electrochemical etching [8–10], the sol–gel method [11], heat
or alkaline treatment [12], ion implantation [13], plasma spray
coating ([14, 15]), anodization ([16, 17]), and SBF coatings
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([8, 10, 18]) have all shown altered cellular response enhance-
ment of the biocompatibility. The surface results at nanoscale
present a positive effect between material and host response
among all modification techniques [19].

Several studies have shown that cell cultures from the human
body favorably interact with nanostructured surfaces and nano-
scale materials [20], with some proteins more effective than
conventional materials (Fig. 1). The nanosurface has unique
properties such as a wide surface area, and it can be designed
to have specific sizes and shapes. This characteristic enables the
production of a surface with specific biological properties.

Why modify the Surface of the Material?

Many types of materials and surface modifications have been
used in biomaterial fields to improve longevity and
osseointegration.

Currently, most orthopedic and dental implants present ti-
tanium or titanium alloys in their composition [21]. The mod-
ulus of elasticity of Ti cp is 105 GPa and bone 17–25 GPa,
which causes a phenomenon known as stress shielding, po-
tentially leading to peri-implant bone resorption, implant loss,
and bone fracture [5]. The addition of different metal ele-
ments, such as Ta [16], Mo [22], Nb [23], and Zr [24], can
improve titanium alloy properties, including toughness, duc-
tility, tensile strength, fatigue strength, elastic modulus, and
surface hardness [25]. However, implants of titanium and its
alloys often fail due to wear corrosion, fibrous encapsulation,

inflammation, low fracture toughness, low fatigue strength,
and mismatch in modulus of elasticity [26].

Thus, reaching excellent mechanical, chemical, physical, and
biological properties to avoid implant failure remains challeng-
ing. Modifying titanium and titanium alloy implant surfaces is
an excellent way to affect their long-term performance.

Surface modifications include modifications to roughness,
hydrophilicity, surface charge, surface energy, biocompatibil-
ity, and reactivity. These modifications are classified by me-
chanical, chemical, and physical methods depending on the
formation of the surface layer [27]. The mechanical modifica-
tions are machining, grinding, polishing, and blasting; the
chemical treatments include acidic, alkaline, and hydrogen
peroxide treatment, sol–gel, anodic oxidation, CVD, and bio-
chemical methods; and the physical methods are thermal
spray, PVD, ion implantation and deposition, and glow dis-
charge plasma treatment [28].

In addition, modifications in the surface morphology of a
biomaterial that mimics the natural tissue architecture have
been shown to improve cellular interactions and promote
healthy tissue [29]. The surface of the anodized metal with
tubular morphology presents a higher degree of oxidation
and surface energy, and improves the biocompatibility [30].
Previous studies have shown that the use of titanium nano-
tubes, through anodizing of the same, for implants implanted
in hard and soft tissues altered the cellular response, thus en-
hancing the biocompatibility [31–37].

Biological Response to Nanosurface
Modification

In the osteogenesis processes, the synthesis of new bone is
determined to start from the implant surface in the centrifugal
direction. After the deposition of this first layer, strongly in-
fluenced by the implant surface, the production and combina-
tion of the collagen fibers and the bonematrix occur. The bone
subsequently fully matures within 4 weeks. The following
tissue reactions are influenced by both the physical–
chemical properties of the material and the topographic
features.

Several studies show the importance of the implant surface’s
characteristics for achieving a better result. Specifically, surface
microscopical features have been shown to influence the be-
havior of the cells responsible for the final bone formation.

Nanosurface modification can affect the biomaterial’s wetta-
bility in the water and protein content present in the implant site,
making it possible to absorb bone morphogenetic proteins
(BMP), osteogenetic proteins (OP), fibronectin, and osteopontin
released at the implant site following surgery. It can also cause
an increase in osteoblast proliferation and preosteoblastic cell
differentiation, as well as migration to the implant site and an

Fig. 1 Human cell cultures favorably interact with nanostructured
surfaces showing higher cell growth on them
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increase in the production of alkaline phosphatase, transforming
growth factor (TGF) beta, and prostaglandin 2 (PGE2).

The surface treated with strontium loading on nanosurface
Ti–6Al–4V implants enhanced the early bone-bonding ability
by improving the surface characteristics in vitro and in vivo
[38]. A titanium dioxide nanotubular surface with platelet-
derived growth factor-BB covalent modification exhibited neg-
ligible cytotoxicity and satisfactory bioactivity for host cells. It
significantly enhanced the attachment and osteogenesis-related

functions (early-stage proliferation, extracellular matrix
synthesis, and mineralization) of human bone marrow mesen-
chymal stem cells [27]. Titanium dioxide nanotubes could pro-
vide novel designs for dental implants to achieve excellent gin-
gival epithelial healing and osseointegration, facilitating the
clinical application of dental implants [39].

Anodized anisotropic titanium surfaces improved soft-
tissue sealing around dental abutment surfaces, with implica-
tions toward reducing implant failure/peri-implantitis and

Table 1 Effects of the nano-structured modification of surfaces and improvements on different cell lines

Reference Year Cell Line Effect

[48] 2020 Mouse embryonic osteoblast cells (MC3T3-E1) Enhanced cell proliferation

[49] 2020 Bone marrow mesenchymal stem cells (bMSCs) Improved the osseointegration

[50] 2020 Osteoblasts (MG63), fibroblasts (L929), epithelial cells (SCC) Improved the osseointegration and gingival epithelial sealing

[40] 2020 Primary human gingival fibroblasts cells (GFs) Improved soft-tissue sealing

[41] 2020 Primary human gingival fibroblasts cells (GFs) Improved the osseointegration and gingival epithelial sealing

[42] 2020 Mouse embryonic osteoblast (MC3T3-E1) Enhanced
cell proliferation and mineralization

[43] 2020 Human mesenchymal stromal cells (hMSCs) Enhanced osteogenic differentiation

[44] 2020 Human osteoblast-like cells (MG-63) Improved cell proliferation and mineralization

[45] 2020 Bone marrow mesenchymal stem cells (bMSCs) Enhanced early adhesion, proliferation, and osteogenic
differentiation

[46] 2020 Bone marrow mesenchymal stem cells (bMSCs) Improved cell adhesion and proliferation

[51] 2020 Human osteoblast-like cells (MG-63) Increased osteoconductive and osseointegrative

[52] 2020 Human osteoblast-like cells (MG-63) Enhanced cell proliferation and differentiation

[38] 2020 Bone marrow mesenchymal stem cells (bMSCs) Enhanced cell-nanotopography interactions and osseointegration

[53] 2019 Bone marrow mesenchymal stem cells (bMSCs) Improved cell proliferation and differentiation

[54] 2019 Human osteoblast-like cells (MG-63) Enhanced cell proliferation and differentiation

[55] 2019 Bone marrow mesenchymal stem cells (bMSCs) Enhanced early adhesion, proliferation and osteogenic differentiation

[56] 2019 Epithelial HT29 cells Improved cell proliferation and differentiation

[57] 2019 Bone marrow mesenchymal stem cells (bMSCs) Enhanced early adhesion, proliferation, and osteogenic
differentiation

[58] 2019 Mouse embryonic osteoblast (MC3T3-E1) Enhanced
cell proliferation and mineralization

[59] 2019 Adipose-derived stem cells (ADSC) Enhanced
cell proliferation and mineralization

[60] 2019 Mouse embryonic osteoblast (MC3T3-E1) Enhanced
cell proliferation and mineralization

[61] 2019 Mouse embryonic osteoblast (MC3T3-E1) Enhanced
cell proliferation and mineralization

[62] 2019 Primary human fermal fibroblasts adult (HDFa) Improved cell adhesion and proliferation

[63] 2019 Human osteoblast-like cells (MG-63) Enhanced
cell proliferation and mineralization

[64] 2019 Bone marrow mesenchymal stem cells (bMSCs) Enhanced early adhesion, proliferation and osteogenic differentiation

[39] 2019 Mouse embryonic osteoblast (MC3T3-E1) Improved cell adhesion and proliferation

[65] 2018 Human osteoblast-like cells (MG-63) Enhanced
cell proliferation and mineralization

[66] 2018 Bone marrow mesenchymal stem cells (bMSCs) Enhanced early adhesion, proliferation, and osteogenic
differentiation

[67] 2018 Human osteoblast-like cells (MG-63) Enhanced
cell proliferation and mineralization
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achieving long-term success, especially in compromised pa-
tients [40]. The oxidized titanium nano-foveolae (TiNF) sur-
face performed better for human gingival fibroblast biological
activities compared to traditional smooth surfaces [41].
Tantalum coated on titanium dioxide nanotubes presented
good adhesion, differentiation, mineralization, and
osteogenesis-related gene (BMP-2, ALP, OCN, and OPN)
expression in vitro. These results suggest that the Ta/TiO2

nanotube composite coatings can provide a favorable applica-
tion for dental implants to enhance cytocompatibility [42].

Optimized micro-/nanotopography on Ti–6Al–4V alloys
stimulated the osteogenic differentiation capacity of hMSCs
and confirmed the potential application of anodization to im-
prove osteo-integrative surfaces in orthopedic implants [43].
The surface modification of orthopedic implants by optimized
fluorine-substituted hydroxyapatite coating enhanced the
growth of human osteoblast-like cells (MG-63) [44]. The fab-
rication of strontium-incorporated protein supramolecular
nanofilm on titanium substrates had significant capability of
new bone formation in vivo after implantation for 4 weeks
[45]. Hybrid composites based on β-alloy Ti–xNb and oxide
nanotubes improved cell adhesion and proliferation, which is
vital for successful application in regenerative medicine [46].

The advantages of these surfaces are not only attributed to
the roughness due to the pores, which can be similar to other
types of surfaces, but mainly because of the chemical influ-
ence of the anodized layer. The anodized nanoporous surface
offers excellent mechanical retention, and the pores are limit-
ed in size to allow efficient transport of factors and proteins
essential for the osseointegration process [47]. Titanium nano-
tubes improved cellular interactions and reduced stimulation
of the immune response compared to non-nanotube
substrates.

The trend in metallic biomaterials is to improve the
nanotopography in order to improve the cell interaction, con-
sequently increasing the longevity of the implant. Table 1
shows the cell lines used to investigate cell behavior. We
observed that independent of the cell line type, most of the
studies are in agreement and show that the nano-structured
modification of surfaces promoted cell proliferation.

Conclusion

This study shows that titanium implant devices could present
an improvement in biocompatibility when their surfaces were
modified to the nanoscale. This nanotechnology gives signif-
icant results when working on surfaces able to attract cells
favoring the healing and integration process in the human
body. Developing different techniques to alter the titanium
surfaces, we can enable interactions between cells and the
nanoscale surface and suitable biological responses. These
new modified surfaces can be considered intelligent or a

selective-microbial surface. The biomaterial used in the place
of the bone graft should have clinical features similar to au-
tologous bone, as per consistency and quantity. In particular,
the excellent biological properties of nanoscale titanium allow
its use as an implantable biomedical device. Thus, in the field
of orthopedics or oral implant surgery, it is widely considered
an incredible advantage.

However, nanoscale titanium should be tested in animal
models to compare the results to cell cultures in vitro. It is
critical to ensure that these nanoscale materials will have ex-
cellent mechanical, physical, chemical, and biological proper-
ties in in vivo situations. Additionally, the animal model will
contribute to determining any limitations of the nanoscale ti-
tanium. In this way, the next step could be to perform clinical
trials in human.
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